

# TDC1047 Monolithic Video A/D Converter 7-Bit, 20 Msps

### Features

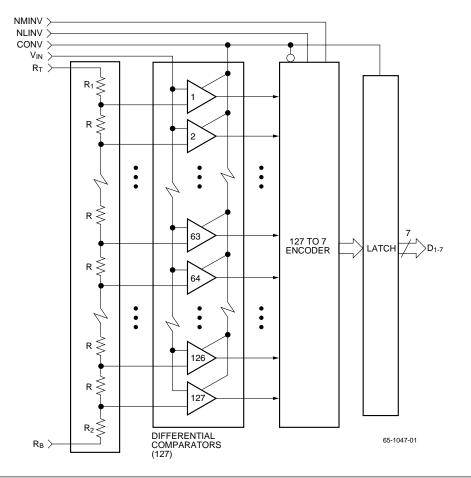
- 7-bit resolution
- 1/2 LSB linearity
- · Sample-and-hold circuit not required
- 20 Msps conversion rate

FAIRCHILD

SEMICONDUCTOR IM

- Selectable output format
- Available in 24-pin CERDIP

### Applications


- · Low-cost video digitzing
- Medical imaging
- TV special effects
- Video simulators
- Radar data conversion

### Description

The TDC1047 is a 20 Msps (Megasample per second) full-parallel (flash) analog-to-digital converter, capable of converting an analog signal with full-power frequency components up to 7 MHz into 7-bit digital words. Use of a sample-and-hold circuit is not necessary. All digital inputs and outputs are TTL compatible.

The TDC1047 consists of 127 clocked latching comparators, combining logic, and an output buffer register. A single convert signal controls the conversion operation. The unit can be connected to give either true or inverted outputs in binary or offset two's complement coding.

The TDC1047 is pin and function compatible with the TDC1027, and offers increased performance with lower power dissipation.



### **Block Diagram**

### **Functional Description**

#### **General Information**

The TDC1047 has three functional sections: a comparator array, encoding logic, and output latches. The comparator array compares the input signal with 127 reference voltages to produce an N-of-127 code (sometimes referred to as a "thermometer" code, as all the comparators referred to voltages more positive than the input signal will be off, and those referred to voltages more negative than the input signal will be on). The encoding logic converts the N-of-127 code into binary or offset two's complement coding, and can invert either output code. This coding function is controlled by DC signals on pins NMINV and NLINV. The output latch holds the output constant between updates.

#### Power

The TDC1047 operates from two supply voltages, +5.0V and -5.2V. The return for ICC, the current drawn from the +5.0V supply, is D<sub>GND</sub>. The return for I<sub>EE</sub>, the current drawn from the -5.2V supply, is A<sub>GND</sub>. All power and ground pins must be connected.

#### Reference

The TDC1047 converts analog signals in the range  $V_{RB} \le V_{IN} \le V_{RT}$  into digital form.  $V_{RB}$  (the voltage applied to the pin at the bottom of the reference resistor chain) and VRT (the voltage applied to the pin at the top of the reference resistor chain) should be between +0.1V and -1.1V. VRT should be more positive than VRB within that range. The voltage applied across the reference resistor chain (VRT-VRB) must be between 0.8V and 1.2V. The nominal voltages are  $V_{RT} = 0.00V$  and  $V_{RB} = -1.00V$ . These voltages may be varied dynamically up to 7MHz. Due to variation in the reference currents with clock and input signals, RT and RB should be low-impedance-to-ground points. For circuits in which the reference is not varied, a bypass capacitor to ground is recommended. If the reference inputs are exercised dynamically as in an Automatic Gain Control (AGC) circuit, a low-impedance reference source is recommended.

### **Pin Assignments**

Two function control pins, NMINV and NLINV are provided. These controls are for DC (i.e., steady state) use. They permit the output coding to be either straight binary or offset two's complement, in either true or inverted sense, according to the Output Coding Table. These pins are active LOW as signified by the prefix "N" in the signal name. They may be tied to VCC for a Logic 1 and DGND for a Logic 0.

#### Convert

The TDC1047 requires a CONVert (CONV) signal. A sample is taken (the comparators are latched) within the Sampling Time Offset (tSTO) of a rising edge on the CONV pin. The 127 to 7 encoding is performed on the falling edge of the CONV signal. The coded result is transferred to the output latches on the next rising edge. The outputs hold the previous data a minimum time (tHO) after the rising edge of the CONV signal. This permits the previous conversion result to be acquired by external circuitry at that rising edge, i.e., data for sample N is acquired by the external circuitry while the TDC1047 is taking input sample N+2.

### Analog Input

The TDC1047 uses strobed latching comparators which cause the input impedance to vary with the signal level, as comparator input transistors are cutoff or become active. For optimal performance, both VIN pins must be used and the source impedance of the driving circuit must be less than 30 Ohms. The input signal will not damage the TDC1047 if it remains within the range of VEE to + 0.5V. If the input signal is between the V<sub>RT</sub> and V<sub>RB</sub> references, the output will be a binary number between 0 and 127 inclusive. A signal outside this range will indicate either full-scale positive or full-scale negative, depending on whether the signal is off-scale in the positive or negative direction.

### Outputs

The outputs of the TDC1047 are TTL compatible, and capable of driving four low-power Schottky TTL (54/74 LS) unit loads or the equivalent. The outputs hold the previous data a minimum time (t<sub>HO</sub>) after the rising edge of the CONV signal.

| V <sub>IN</sub> [  | 1 2             | 24 ] | VIN              |            |
|--------------------|-----------------|------|------------------|------------|
| Rt [               | 2 2             | 23   | R <sub>B</sub>   |            |
| Agnd [             | 3 2             | 22   | Agnd             |            |
| D <sub>GND</sub> [ | 4 2             | 21 🛛 | D <sub>GND</sub> |            |
| NMINV [            | 5 2             | 20 🛛 | CONV             |            |
| (MSB) D1 [         | 6 <sup>-</sup>  | 19   | D7 (LSB)         |            |
| D <sub>2</sub> [   | 7 <sup>′</sup>  | 18 🛛 | D <sub>6</sub>   |            |
| D3 [               | 8 '             | 17 🛛 | $D_5$            |            |
| D4 [               | 9 .             | 16   | V <sub>CC</sub>  |            |
| V <sub>CC</sub> [  | 10 <sup>-</sup> | 15 🛛 | NLINV            |            |
| V <sub>EE</sub> [  | 11 <sup>·</sup> | 14 🛛 | VEE              |            |
| A <sub>GND</sub> [ | 12 <sup>·</sup> | 13   | A <sub>GND</sub> | 65-1047-02 |
|                    |                 |      |                  |            |

#### 24 Lead Ceramic DIP

| Pin Name     | Pin Number       | Value     | Pin Function Description         |  |  |
|--------------|------------------|-----------|----------------------------------|--|--|
| Power        |                  |           |                                  |  |  |
| Vcc          | 10, 16           | +5.0V     | Positive Supply Voltage          |  |  |
| VEE          | 11, 14           | -5.2V     | Negative Supply Voltage          |  |  |
| Dgnd         | 4, 21            | 0.0V      | Digital Ground                   |  |  |
| Agnd         | 3, 12, 13, 22    | 0.0V      | Analog Ground                    |  |  |
| Reference    |                  | •         |                                  |  |  |
| RT           | 2                | 0.00V     | Reference Resistor (Top)         |  |  |
| RB           | 23               | -1.00V    | Reference Resistor (Bottom)      |  |  |
| Controls     |                  |           |                                  |  |  |
| NMINV        | 5                | TTL       | Not Most Significant Bit INVert  |  |  |
| NLINV        | 15               | TTL       | Not Least Significant Bit INVert |  |  |
| Convert      | •                | •         |                                  |  |  |
| CONV         | 20               | TTL       | Convert                          |  |  |
| Analog Input |                  |           |                                  |  |  |
| Vin          | 1, 24            | 0V to -1V | Analog Signal Input              |  |  |
| Outputs      |                  |           |                                  |  |  |
| D1           | 6                | TTL       | MSB Output                       |  |  |
| D2-D6        | 7, 8 , 9, 17, 18 | TTL       |                                  |  |  |
| D7           | 19               | TTL       | LSB Output                       |  |  |

# Absolute Maximum Ratings<sup>1</sup>

(beyond which the device will be damaged)

| Parameter                  |                                               | Min. | Max. | Unit |
|----------------------------|-----------------------------------------------|------|------|------|
| Supply Voltage             | S                                             | 4    |      |      |
| V <sub>C</sub> C (measured | to D <sub>GND</sub> )                         | -0.5 | +7.0 | V    |
| VEE (measured              | to Agnd)                                      | -7.0 | +0.5 | V    |
| AGND (measure              | d to D <sub>GND</sub> )                       | -0.5 | +0.5 | V    |
| Input Voltages             |                                               | 1    |      |      |
| CONV, NMINV,               | NLINV (measured to DGND)                      | -0.5 | +5.5 | V    |
| VIN, VRT, VRB (I           | measured to AGND)                             | +0.5 | VEE  | V    |
| V <sub>RT</sub> (measured  | to V <sub>RB</sub> )                          | -2.2 | +2.2 | V    |
| Output                     |                                               | 1    |      |      |
| Applied voltage            | (measured to D <sub>GND</sub> ) <sup>2</sup>  | -0.5 | 5.5  | V    |
| Applied current,           | externally forced <sup>3,4</sup>              | -1.0 | 6.0  | mA   |
| Short circuit dura         | ation (single output in high state to ground) |      | 1    | sec  |
| Temperature                |                                               |      |      |      |
| Operating                  | Case                                          | -55  | +125 | °C   |
|                            | Junction                                      |      | +175 | °C   |
| Lead, soldering            | (10 seconds)                                  |      | +300 | °C   |
| Storage                    |                                               | -65  | +150 | °C   |

Notes:

1. Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

2. Applied voltage must be current limited to specified range.

3. Forcing voltage must be limited to specified range.

4. Current is specified as positive when flowing into the device.

### **Operating Conditions**

|           | Temperature Range                           |      |      |      |      |         |      |       |
|-----------|---------------------------------------------|------|------|------|------|---------|------|-------|
|           |                                             |      |      | d    | E    | Extende | əd   |       |
| Parameter | rs                                          | Min. | Nom. | Max. | Min. | Nom.    | Max. | Units |
| Vcc       | Positive Supply Voltage (measured to DGND)  | 4.75 | 5.0  | 5.25 | 4.5  | 5.0     | 5.5  | V     |
| VEE       | Negative Supply Voltage (measured to AGND)  | -4.9 | -5.2 | -5.5 | -4.9 | -5.2    | -5.5 | V     |
| Vagnd     | Analog Ground Voltage (measured to DGND)    | -0.1 | 0.0  | 0.1  | -0.1 | 0.0     | 0.1  | V     |
| tPWL      | CONV Pulse Width, (LOW)                     | 14   |      |      | 14   |         |      | ns    |
| tPWH      | CONV Pulse Width, (HIGH)                    | 16   |      |      | 16   |         |      | ns    |
| VIL       | Input Voltage, Logic LOW                    |      |      | 0.8  |      |         | 0.8  | V     |
| Vih       | Input Voltage, Logic HIGH                   | 2.0  |      |      | 2.0  |         |      | V     |
| IOL       | Output Current, Logic LOW                   |      |      | 4.0  |      |         | 2.0  | mA    |
| ЮН        | Output Current, Logic HIGH                  |      |      | -0.4 |      |         | -0.4 | mA    |
| Vrt       | Most Positive Reference Input <sup>1</sup>  | -0.1 | 0.0  | 0.1  | -0.1 | 0.0     | 0.1  | V     |
| Vrb       | Most Negative Reference Inputs <sup>1</sup> | -0.9 | -1.0 | -1.1 | -0.9 | -1.0    | -1.1 | V     |
| Vrt-Vrb   | Voltage Reference Differential              | 0.8  | 1.0  | 1.2  | 0.8  | 1.0     | 1.2  | V     |
| Vin       | Input Voltage                               | Vrb  |      | Vrt  | Vrb  |         | Vrt  | V     |

### **Operating Conditions** (continued)

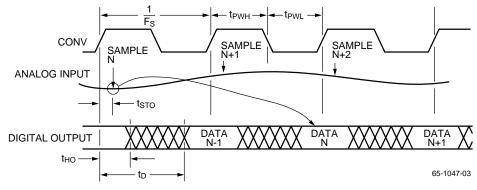
|           |                                |   |      | Temperature Range |      |         |      |       |  |
|-----------|--------------------------------|---|------|-------------------|------|---------|------|-------|--|
|           |                                |   |      | d                 | E    | Extende | ed   |       |  |
| Parameter | Parameters                     |   | Nom. | Max.              | Min. | Nom.    | Max. | Units |  |
| TA        | Ambient Temperature, Still Air | 0 |      | 70                |      |         |      |       |  |
| ТС        | TC Case Temperature            |   |      |                   | -55  |         | 125  | °C    |  |

Note:

1. VRT must be more positive than VRB, and voltage reference differential must be within specified range.

### **DC Electrical Characteristics**

|       |                                  |                                                       | Temperature Range<br>Standard Extended |      | nge  |      |       |
|-------|----------------------------------|-------------------------------------------------------|----------------------------------------|------|------|------|-------|
|       |                                  |                                                       | Standard                               |      | Exte | nded |       |
| Param | neter                            | Test Conditions                                       | Min.                                   | Max. | Min. | Max. | Units |
| Icc   | Positive Supply Current          | V <sub>CC</sub> = Max, static <sup>1</sup>            |                                        | 25   |      | 30   | mA    |
| IEE   | Negative Supply Current          | VEE = Max, static <sup>1</sup>                        |                                        |      |      |      |       |
|       |                                  | $T_A = 0^{\circ}C$ to $70^{\circ}C$                   |                                        | -170 |      |      | mA    |
|       |                                  | $T_A = 70^{\circ}C$                                   |                                        | -135 |      |      | mA    |
|       |                                  | T <sub>C</sub> = -55°C to 125°C                       |                                        |      |      | -220 | mA    |
|       |                                  | T <sub>C</sub> = 125°C                                |                                        |      |      | -130 | mA    |
| IREF  | Reference Current                | VRT, VRB = Nom                                        |                                        | 35   |      | 50   | mA    |
| RREF  | Total Reference Resistance       |                                                       | 28                                     |      | 20   |      | Ω     |
| RIN   | Input Equivalent Resistance      | VRT, VRB = Nom, VIN = VRB                             | 100                                    |      | 40   |      | KΩ    |
| CIN   | Input Capacitance                |                                                       |                                        | 60   |      | 60   | pF    |
| ICB   | Input Constant Bias Current      | VEE = Max                                             |                                        | 150  |      | 300  | μΑ    |
| IIL   | Input Current, Logic LOW         | $V_{CC} = Max, V_I = 0.5V$                            | •                                      |      |      |      |       |
|       |                                  | CONV                                                  |                                        | -0.4 |      | -0.6 | mA    |
|       |                                  | NMINV, NLINV                                          |                                        | -0.6 |      | -0.8 | mA    |
| Ιн    | Input Current, Logic HIGH        | $V_{CC} = Max, V_I = 2.4V$                            |                                        | 50   |      | 50   | μA    |
| -li   | Input Current, Max Input Voltage | $V_{CC} = Max, V_I = 5.5V$                            |                                        | 1.0  |      | 1.0  | mA    |
| Vol   | Output Voltage, Logic LOW        | VCC = Min, IOL = Max                                  |                                        | 0.5  |      | 0.5  | V     |
| Vон   | Output Voltage, Logic HIGH       | V <sub>CC</sub> = Min, I <sub>OH</sub> = Max          | 2.4                                    |      | 2.4  |      | V     |
| los   | Short Circuit Output Current     | VCC = MAX, One pin to ground,<br>one second duration. |                                        | -30  |      | -30  | mA    |
| Сі    | Digital Input Capacitance        | $T_A = 25^{\circ}C, F = 1MHz$                         |                                        | 15   |      | 15   | pF    |


Note:

1. Worst case, all digital inputs and outputs LOW.

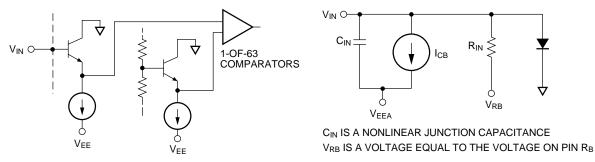
# **AC Electrical Characteristics**

|                                                                   |                      |                                                      | Tei      |      |          |      |       |
|-------------------------------------------------------------------|----------------------|------------------------------------------------------|----------|------|----------|------|-------|
|                                                                   |                      |                                                      | Standard |      | Extended |      |       |
| Parameter                                                         |                      | Test Conditions                                      | Min.     | Max. | Min.     | Max. | Units |
| Fs Maximum Conversion Rate V <sub>CC</sub> = Min, V <sub>EE</sub> |                      | V <sub>CC</sub> = Min, V <sub>EE</sub> = Min         | 20       |      | 20       |      | MSPS  |
| tSTO                                                              | Sampling Time Offset | VCC = Min, VEE = Min                                 |          | 7    |          | 10   | ns    |
| tD Output Delay                                                   |                      | V <sub>CC</sub> = Min, V <sub>EE</sub> = Min, Load 1 |          | 30   |          | 35   | ns    |
| tHO Output Hold Time                                              |                      | VCC = MAX, VEE = Max, Load 1                         | 5        |      | 5        |      | ns    |

### **Timing Diagram**

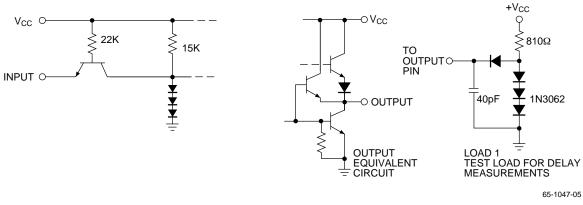


#### Figure 1. Timing Diagram


# **System Performance Characteristics**

|       |                                       |                     | Tei      | mperat  | ure Ra   | nge  |           |
|-------|---------------------------------------|---------------------|----------|---------|----------|------|-----------|
|       |                                       |                     | Standard |         | Extended |      |           |
| Paran | neter                                 | Test Conditions     | Min.     | Max.    | Min.     | Max. | Units     |
| ELI   | Linearity Error Integral, Independent | VRT, VRB = Nom      |          | 0.4     |          | 0.4  | %         |
| Eld   | Linearity Error Differential          |                     |          | 0.4     |          | 0.4  | %         |
| CS    | Code Size                             | VRT, VRB = Nom      | 30       | 170     | 30       | 170  | % Nominal |
| Vот   | Offset Voltage Top                    | VIN = VRT           |          | +50     |          | +50  | mV        |
| Еов   | Offset Voltage Bottom                 | VIN = VRB           |          | -30     |          | -30  | mV        |
| Тсо   | Temperature Coefficient               |                     |          | ±20     |          | ±20  | μV/°C     |
| BW    | Bandwidth, Full Power Input           |                     | 7        |         | 7        |      | MHz       |
| tTR   | Transient Response, Full-Scale        |                     |          | 10      |          | 10   | ns        |
| SNR   | Signal-to-Noise Ratio                 | 7MHz Bandwidth, 20M | Isps Co  | nversio | 'n       |      |           |
|       | Peak Signal/RMS Noise                 | 1 MHz Input         | 48       |         | 46       |      | dB        |
|       |                                       | 7 MHz Input         | 46       |         | 44       |      | dB        |
|       | RMS Signal/RMS Noise                  | 1 MHz Input         | 39       |         | 37       |      | dB        |
|       |                                       | 7 MHz Input         | 37       |         | 35       |      | dB        |
| EAP   | Aperture Error                        |                     |          | 50      |          | 50   | ps        |
| DP    | Differential Phase Error <sup>1</sup> | Fs = 4 x NTSC       |          | 1.5     |          | 1.5  | Degree    |
| DG    | Differential Gain Error <sup>1</sup>  | Fs = 4 x NTSC       |          | 2.5     |          | 2.5  | %         |

Note:


1. In Excess of quantization.

### **Equivalent Circuits**



65-1047-04

#### Figure 2. Simplified Analog Input Equivalent Circuit



#### Figure 3. Digital Input Equivalent Circuit

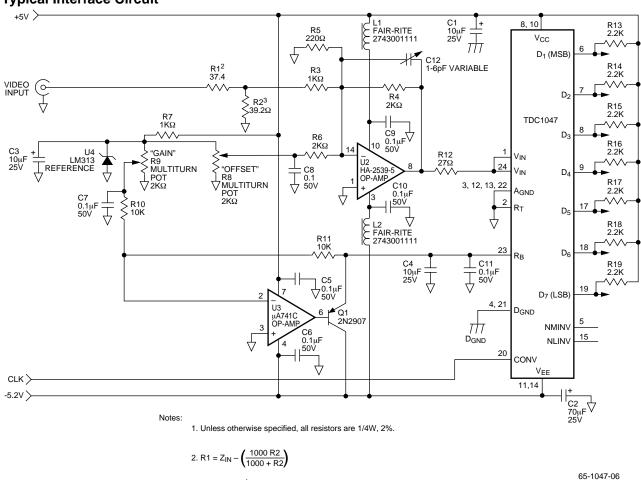
Figure 4. Output Circuits

### **Output Coding Table**

|      |                             | Bin                | ary      | Two's Co | mplement |
|------|-----------------------------|--------------------|----------|----------|----------|
|      | Range                       | True               | Inverted | True     | Inverted |
| Step | -1.0000V FS<br>7.874mV STEP | NMINV=1<br>NLINV=1 | 0<br>0   | 0<br>1   | 1<br>0   |
| 000  | 0.0000V                     | 0000000            | 1111111  | 1000000  | 0111111  |
| 001  | -0.0078V                    | 0000001            | 1111110  | 1000001  | 0111110  |
| •    | •                           | •                  | •        | •        | •        |
| •    | •                           | •                  | •        | •        | •        |
| •    | •                           | •                  | •        | •        | •        |
| 063  | -0.4960V                    | 0111111            | 1000000  | 1111111  | 0000000  |
| 064  | -0.5039V                    | 1000000            | 0111111  | 0000000  | 1111111  |
| •    | •                           | •                  | •        | •        | •        |
| •    | •                           | •                  | •        | •        | •        |
| •    | •                           | •                  | •        | •        | •        |
| 126  | -1.9921V                    | 1111110            | 0000001  | 0111110  | 1000001  |
| 127  | -1.0000V                    | 1111111            | 0000000  | 0111111  | 1000000  |

#### Note:

1. Voltages are code midpoints when calibrated (see Calibration Section).


### **Applications Discussion**

#### Calibration

To calibrate the TDC1047, adjust V<sub>RT</sub> and V<sub>RB</sub> to set the 1st and 127th thresholds to the desired voltages in the block diagram. Note that  $R_1$  is greater than R, ensuring calibration with a positive voltage on R<sub>T</sub>. Assuming a 0V to -1V desired range, continuously strobe the converter with -0.0039V on

#### Typical Interface Circuit

the analog input, and adjust V<sub>RT</sub> for output toggling between codes 00 and 01. Then apply -0.9961V and adjust V<sub>RB</sub> for toggling between codes 126 and 127. Instead of adjusting V<sub>RT</sub>, R<sub>T</sub> can be connected to analog ground and the 0V end of the range calibrated with a buffer offset control. R<sub>B</sub> is a convenient point for gain adjust that is not in the analog signal path. These techniques are employed in Figure 5





3. R2 =

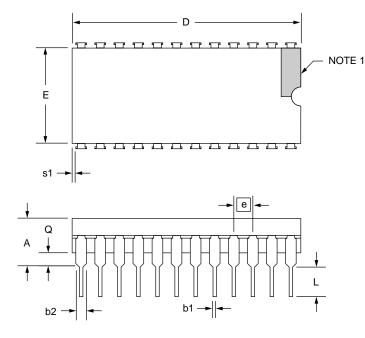
2VRange

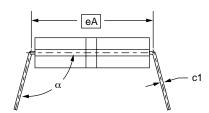
VREF ZIN

- 0.001

### Notes:

### Notes:


### **Mechanical Dimensions**


#### 24 Lead Ceramic DIP

| Symbol | Inc  | hes   | Millin | neters | Notes |
|--------|------|-------|--------|--------|-------|
| Symbol | Min. | Max.  | Min.   | Max.   | Notes |
| А      |      | .225  | _      | 5.72   |       |
| b1     | .014 | .023  | .36    | .58    | 8     |
| b2     | .045 | .065  | 1.14   | 1.65   | 2, 8  |
| c1     | .008 | .015  | .20    | .38    | 8     |
| D      |      | 1.290 | —      | 32.77  | 4     |
| E      | .500 | .610  | 12.70  | 15.49  | 4     |
| е      | .100 | BSC   | 2.54   | BSC    | 5, 9  |
| eA     | .600 | BSC   | 15.24  | BSC    | 7     |
| L      | .120 | .200  | 3.05   | 5.08   |       |
| Q      | .015 | .075  | .38    | 1.91   | 3     |
| s1     | .005 | _     | .13 —  |        | 6     |
| α      | 90°  | 105°  | 90°    | 105°   |       |

#### Notes:

- 1. Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
- 2. The minimum limit for dimension "b2" may be .023 (.58mm) for leads number 1, 12, 13 and 24 only.
- 3. Dimension "Q" shall be measured from the seating plane to the base plane.
- 4. This dimension allows for off-center lid, meniscus and glass overrun.
- The basic pin spacing is .100 (2.54mm) between centerlines. Each pin centerline shall be located within ±.010 (.25mm) of its exact longitudinal position relative to pins 1 and 24.
- 6. Applies to all four corners (leads number 1, 12, 13, and 24).
- "eA" shall be measured at the center of the lead bends or at the centerline of the leads when "α" is 90°.
- All leads Increase maximum limit by .003 (.08mm) measured at the center of the flat, when lead finish applied.
- 9. Twenty-two spaces.





### **Ordering Information**

| Product Number | Temperature Range                   | Screening   | Package                | Package Marking |
|----------------|-------------------------------------|-------------|------------------------|-----------------|
| TDC1047B7C     | STD–T <sub>A</sub> = 0°C to 70°C    | Commercial  | 24 Lead<br>Ceramic DIP | 1047B7C         |
| TDC1047B7V     | EXT–T <sub>C</sub> = -55°C to 125°C | MIL-STD-883 | 24 Lead<br>Ceramic DIP | 1047B7V         |

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com